
Peculiarities of the band structure of multi-component photonic crystals with different

dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 115401

(http://iopscience.iop.org/0953-8984/22/11/115401)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 07:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 115401 (6pp) doi:10.1088/0953-8984/22/11/115401

Peculiarities of the band structure of
multi-component photonic crystals with
different dimensions
A K Samusev, K B Samusev, M V Rybin and M F Limonov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St Petersburg 194021,
Russia

E-mail: m.rybin@mail.ioffe.ru

Received 25 November 2009, in final form 11 January 2010
Published 23 February 2010
Online at stacks.iop.org/JPhysCM/22/115401

Abstract
In this work we offer a simple analytical method which allows us to determine and study the
effects of the selective switching of photonic stop-bands in multi-component photonic crystals
(Mc-PhCs) of any dimensionality. The calculations for Mc-PhCs with low dielectric contrast
have been performed in the framework of the model based on the scattering form factor
analysis. It has been shown that the effects of selective switching of photonic stop-bands
predicted theoretically and found experimentally before in three-dimensional (3D) Mc-PhC
have a general character and may be observed also in one-dimensional (1D) and
two-dimensional (2D) Mc-PhCs. It is found that 1D, 2D and 3D Mc-PhCs demonstrate
unexpectedly similar quasi-periodic behaviour of photonic stop-bands as a function of the
reciprocal lattice vector. A proper choice of the structural and dielectric parameters can create a
resonance photonic stop-band determining the Bragg wavelengths, to which a photonic crystal
can never be transparent.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The architecture of a photonic crystal (PhC) is somewhat
similar to that of computer architecture, which defines the
way in which a central processing unit performs internally and
interacts with other components. A PhC, which in our view
can be considered to be analogous to a central processing unit,
should ideally be designed to manipulate the flow of photons
as effectively as a central processing unit (or possibly any
electronic device) manipulates the flow of electrons or holes.

When considering the conceptual design and operational
structure of a PhC one should select the shape and dielectric
properties of the photonic building blocks and their distribution
in space. Here we should note that in most theoretical
and experimental studies PhCs have been considered as two-
component structures, consisting of a periodic array of two
homogeneous materials having different dielectric permittivity
constants [1–3]. All the photonic stop-bands in such PhCs
disappear simultaneously when the permittivities of the two
materials (two components) become equal. Independent
control over the selective switching of stop-bands in such

PhCs is impossible. Multi-component PhCs (Mc-PhCs),
which we define as periodic structures consisting of three
or more homogeneous components (or when at least one of
the components is inhomogeneous), have received much less
attention. We can mention only a few papers that have
considered PhCs with more than two components [4–10].
Systematic studies of Mc-PhCs were conducted on 3D
PhC structures in [11, 12]. It has been experimentally
demonstrated that Mc-PhCs possess qualitatively new photonic
properties, which well-studied two-component PhCs do not
exhibit. Specifically, Mc-PhCs demonstrate (i) the existence
of the resonance stop-bands, which cannot be switched-OFF;
(ii) selective switching of a specific stop-band (i.e. selective
ON/OFF switching). These properties allow one to consider
the possibility to selectively control the light propagation
at different wavelengths. Experimental results obtained on
synthetic opals have been described in the framework of
the analytical model. While the precision of the model
decreases when the dielectric permittivity contrast exceeds
certain limits, its practical use and further development
appears quite promising. This model not only allows one to
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calculate photonic properties of PhC with the known structural
parameters (‘direct problem’), but most importantly design the
structure of a PhC with the desired optical properties (‘inverse
problem’). The solution of this problem by using numerical
computation methods [4, 13–17] involves to a large extent a
purely intuitive search [18].

In the present work, a detailed theoretical study of the
photonic stop-band switching effects in Mc-PhCs of different
dimensions has been carried out in an approach similar
to [11, 12, 19]. Earlier this approach was successfully used
to describe selective ON/OFF stop-band switching in classical
PhCs, i.e. synthetic opals, that were previously considered as
two-component structures [20–30]. It is also important to note
that one should be careful in using the analytical approach
in the case of high dielectric contrast as well as in the case
of a multiple Bragg diffraction regime, i.e. when stop-bands
corresponding to different wavevectors overlap. In this case,
the non-diffraction condition should be obtained by solving the
full eigenvalue problem using numerical methods.

2. The structure of Mc-PhCs with different
dimensions

Figure 1 shows the architectural principles for constructing
two-component and multi-component PhCs of different
dimensions, used in our theoretical studies. The three-
component PhC (3c-PhC) is the simplest example of an Mc-
PhC and is also drawn in figure 1. In this work we consider
3c-PhCs with different dimensions as follows.

(i) The 1D 3c-PhC, composed of dielectric slabs of three
sorts, which are closely packed along the coordinate axis,
say, for generality with PhCs with other dimensions, r .
Let us refer to these three components (slabs) as: (1) N
(nucleus) with width 2rn and permittivity constant εn,
(2) C (coat) with parameters rc −rn and εc and (3) F (filler)
with permittivity εf. The slabs are arranged in the ordered
sequence of . . . FCNCFCNCF . . ., i.e. each of the N slabs
is neighboured with two C slabs and F slabs are placed
between the CNC blocks.

(ii) The 2D 3c-PhC, formed by infinite two-component non-
overlapped cylinders arranged in a triangular or a square
lattice structure. Each cylinder consists of a homogeneous
cylindrical nucleus (N) and a homogeneous coating layer
(C). The parameters of the N are the cylinder radius rn and
the permittivity constant εn. The parameters of the C are
the internal radius rn, the external radius rc � rn and the
permittivity constant εc. The interstice space is filled by a
homogeneous material (F, filler) with permittivity εf.

(iii) The 3D 3c-PhC, constructed of non-overlapped spheres,
the centres of which coincide with sites of an fcc lattice.
Each sphere consists of the homogeneous nucleus (N) of
the radius rn and the permittivity εn and the homogeneous
coating layer (C) surrounding the N and having an internal
radius rn, external radius rc � rn and a permittivity
constant εc. The interspherical space is filled by a
homogeneous filling material (F) with permittivity εf.

Figure 1. The conceptual design of PhCs. Simple examples of
building blocks for PhCs with different dimensions (a)–(c). The
permittivity distribution for two- (d) and multi-component (e), (f)
structures.

Further, the F is considered in all three cases to be spatially
homogeneous (εf = const). Let us refer to the two other
structural elements (N and C) together as a ‘building block’.
For the 3c-PhC case, permittivities of N and C are constant.
While for the general case of the Mc-PhC the permittivity value
may vary within a building block boundary (figure 1).

(i) For the 1D Mc-PhC case the permittivity of the building
block depends on the r coordinate value, εn(r) and εc(r)

so it forms a symmetrical cell, i.e. εn(r) = εn(−r),
εc(r) = εc(−r). Each building block is surrounded by
the homogeneous filler εf = const.

(ii) For the 2D Mc-PhC case the permittivity of the building
block has a radial symmetry of εn(r) and εc(r), where r is
the radial coordinate.

(iii) For the 3D Mc-PhC case the permittivity of the building
block has spherical symmetry of εn(r) and εc(r), where r
is the radial coordinate as well.

All of the above-described Mc-PhCs with different
dimensions will be considered further in the framework of the
analytical approach to describe and calculate specific optical
properties and the selective photonic stop-band switching
conditions. The 3c-PhC case is of special interest because it
provides a relatively easy analytical solution and representative
results. In this work the photonic properties of Mc-PhCs have
been studied depending on filler permittivity εf and, hence, we
consider εf as a variable. Such variations can be realized in
practice by changing the εf using some external means (such
as electromagnetic field, temperature, mechanical stress etc) or
simply by changing the filler material itself.

3. Mc-PhCs with arbitrary permittivity profile

The analytical model is based on a well-known fact: the Bragg
diffraction from a set of crystal planes (characterized by Miller
indices (h) for 1D, (hk) for 2D and (hkl) for 3D) underlies
the existence of a corresponding (h) or (hk) or (hkl) stop-
band. For this reason, in order to determine the conditions for
the stop-band to arise and vanish, it is enough to consider the
conditions for arising and vanishing of the Bragg diffraction
from the specific set of the corresponding crystal planes. The
conditions of vanishing a particular stop-band will be referred
to as ‘OFF-switching conditions’.
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Let us consider the Fourier coefficient of the inverse of the
permittivity, i.e. the scattering form factor S(G):

S(G) = 1

V0

∫
V0

dr
1

ε(r)
exp(−iG · r), (1)

which describes the intensity of Bragg diffraction from a set
of crystal planes as a function of the reciprocal lattice vector
G. The reciprocal lattice vector for 1D, 2D and 3D PhCs is
Gh = hb1, Ghk = hb1 + kb2 and Ghkl = hb1 + kb2 + lb3,
respectively, where {bi; i = 1, 2, 3} are the reciprocal lattice
vectors. V0 represents the length (1D PhC), area (2D PhC) or
volume (3D PhC) of the Wigner–Seitz cell.

Consider a general case of an Mc-PhC with arbitrary
dimensions (1D, 2D, 3D). The inverse permittivity of a
Wigner–Seitz cell of the crystal is defined as

1

ε(r)
= 1

εf
+

(
1

εbb(r)
− 1

εf

)
�(rbb − r), (2)

where εbb(r) is an arbitrary profile of the permittivity of
a building block possessing the proper (for the different
dimensionality of 1D, 2D or 3D) symmetry described in
section 2. The size of the building block is defined as rbb = rc.
The unit step function is defined as: �(r) = 1 at r � 0 and
�(r) = 0 at r < 0.

We will analyse the stop-band OFF-switching conditions,
when the scattering form factor turns to zero S(G) = 0. At
|G| �= 0, the relation S(G) = 0 can be rewritten as

S(G) = 1

V0

∫
V0

dr
(

1

εbb(r)
− 1

εf

)
�(rbb −r) exp(−iG·r) = 0.

(3)
As mentioned above, we take the filler to be the

homogeneous material (εf = const). Therefore (3) gives
the filler permittivity value yielding the photonic stop-band
OFF-switching condition which is uniquely determined by
the reciprocal lattice vector G. Such a value of the filler
permittivity will be denoted by ε0

f (G), where G = |G|.
Integration of the appropriate expressions provides ε0

f (G) for
Mc-PhCs of different dimensionality:

For 1D Mc-PhC: ε0
f (G) = sin(G rbb)

G
∫ rbb

0
1

εbb(r)
cos(Gr) dr

.

(4a)

For 2D Mc-PhC: ε0
f (G) = rbb J1(Grbb)

G
∫ rbb

0
1

εbb(r)
r J0(Gr) dr

.

(4b)

For 3D Mc-PhC: ε0
f (G) = R(Grbb)

G2
∫ rbb

0
1

εbb(r)
r sin(Gr) dr

.

(4c)
In (4b) J0(x), J1(x) are the zeroth- and first-order Bessel

functions of the first kind, while in (4c) R(x) ≡ sin(x) −
x cos(x) is the Rayleigh–Hans function.

To understand the behaviour of ε0
f (G) as a function of the

modulus of the reciprocal lattice vector, we do not limit the
analysis to the discrete values of G (Gh in 1D, Ghk in 2D and
Ghkl in 3D cases) but consider it as a continuous function G
and omit the hkl indices.

4. Three-component photonic crystals

As a representative example, we consider the case of the stop-
band OFF-switching conditions for the 3c-PhC of different
dimensionality. In this case building blocks consist of a
homogeneous nucleus and homogeneous coat. The formula (2)
for the inverse permittivity of a Wigner–Seitz cell could be
rewritten as:

1

ε(r)
= 1

εf
+

(
1

εc
− 1

εf

)
�(rc − r)

+
(

1

εn
− 1

εc

)
�(rn − r). (5)

The corresponding expressions for ε0
f (G) now have the

following form that is convenient for detailed analysis:

For 1D 3c-PhC:
1

ε0
f

= 1

εc
+

(
1

εn
− 1

εc

)
sin(Grn)

sin(Grc)
. (6a)

For 2D 3c-PhC:
1

ε0
f

= 1

εc
+

(
1

εn
− 1

εc

)
rn

rc

J1(Grn)

J1(Grc)
.

(6b)

For 3D 3c-PhC:
1

ε0
f

= 1

εc
+

(
1

εn
− 1

εc

)
R(Grn)

R(Grc)
. (6c)

As can be seen from (4a)–(4c) and (6a)–(6c), in any
instance the ε0

f value, which determines the stop-band OFF-
switching conditions, depends on the modulus of the reciprocal
lattice vector G. So in an Mc-PhC of any dimension the
selective photonic stop-band switching regime can take place.

5. The resonance stop-band in Mc-PhCs

Another important result follows at once from the formulae
considered ((4a)–(4c) and (6a)–(6c)): the photonic stop-band
OFF-switching condition has quasi-periodic character with the
resonance features depending on G. By a resonance condition
we imply such a value of G = Gres at which ε0

f → ±∞.
Infinite permittivity is impossible, therefore the stop-band
corresponding Gres cannot be switched-OFF by changing the
filler permittivity, i.e. in this case OFF-switching condition
is unfeasible. The expressions (4a)–(4c) and (6a)–(6c) point
out that alternations of the sign of functions sin(Gr), J1(Gr)

and R(Gr) (see figure 2) are responsible for the resonance
ε0

f → ±∞. Note that the resonant values G = Gres are
determined by the following equations:

For 1D 3c-PhC:
1

εc
=

(
1

εc
− 1

εn

)
sin(Grn)

sin(Grc)
. (7a)

For 2D 3c-PhC:
1

εc
=

(
1

εc
− 1

εn

)
rn

rc

J1(Grn)

J1(Grc)
. (7b)

For 3D 3c-PhC:
1

εc
=

(
1

εc
− 1

εn

)
R(Grn)

R(Grc)
. (7c)

6. Discussion

Let us discuss the stop-band OFF-switching conditions
obtained above and compare it with the experimental
data [11, 12]. Figure 3 shows ε0

f (G) dependences determined

3
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Figure 2. The graph of alternating-sign functions: (a) the sine function; (b) the first-order Bessel function of the first kind multiplied by its
argument; (c) the Rayleigh–Hans function.

by (4c). The figure demonstrates characteristic ε0
f (G) function

behaviour at the region of small G in its dependence on
the dielectric parameters. In the trivial case of εn = εc

(i.e. reduction to the two-component PhC) equation (4c)
gives the following solution ε0

f (G) = εn = εc. This
solution corresponds to the case of the optically homogeneous
structure, therefore the OFF-switching conditions are fulfilled
simultaneously for any stop-band, i.e. the transmission
coefficient becomes unity (figure 4(g)). It is clear that the
graph of the ε0

f (G) function corresponds to the horizontal line
on figure 3. It worth noting that the ε0

f (G) function changes
dramatically when the nucleolus to coat the dielectric contrast
appears (εn �= εc). Now there is no such filler permittivity
value εf that makes the structure optically homogeneous. In
this case ε0

f (G) dependences become quasi-periodical and
resonant. When the nucleus is denser (εn > εc) the ε0

f (G)

function increases, and when the coat is denser (εn < εc) the
ε0

f (G) function decreases. Such a behaviour is specific for
small values of G � 30, where the ε0

f (G) function is being
inverted (figure 5).

In figure 3, in addition to the ε0
f (G) dependences

calculated we present the experimental data from [12]. They
were obtained in studies of the immersion dependences of
the transmission spectra of the opal based PhC consisting of
close-packed a-SiO2 spheres. Here ‘immersion dependence’
means dependence of the transmission spectrum on the filler
permittivity εf. In this experiment two liquids (namely,
distilled water with εw = 1.78 and propylene glycol with
εpg = 2.05) as well as their mixtures were used as an opal
matrix filler providing the variation of its dielectric constant in
the range of 1.78 � εf � 2.05. The immersion behaviour of
the following families of photonic band gaps has been revealed:
{111}, {200}, {220}, {311} and {222}. As a result, it was shown
that the stop-bands disappear (i.e. the OFF-switching condition
is fulfilled) at very different values of the filler permittivity
εf (figures 4(d) and (i)). Two values ε0

f (G111) ∼ 1.82 and
ε0

f (G220) ∼ 1.93 were obtained directly from the measured
data. In addition two other values ε0

f (G200) ∼ 1.63 and
ε0

f (G311) ∼ 1.75 were obtained by extrapolating data out
of the measured region (1.78 � εf � 2.05). Besides, it
was shown that the {222} stop-band’s dip intensity virtually
does not depend on the filler permittivity εf (figure 4(j)). For
this reason the {222} stop-band was attributed to be resonant.
The experimentally obtained ε0

f (Ghkl ) values are presented
in figure 3. The values of the moduli of the reciprocal
lattice vector Ghkl for an fcc opal lattice are the following:

Figure 3. Non-diffraction conditions for an opal-like structure
obtained from measured and extrapolated data from [12] (circles) and
from calculations (curves). The filler permittivity ε0

f (G) as a function
of the reciprocal lattice vector calculated from equation (4c) for the
permittivity profile εbb(r) simulating the a-SiO2 spheres. The εbb(r)
profiles given in the inset and the corresponding filler permittivity
ε0

f (G) are presented by the same curves (green dashed curves, blue
thin lines, red thick curves). The grey region is for the experimental
range of εf. The moduli of the shortest reciprocal lattice vector Ghkl

are shown by vertical lines. The values of G are taken in the units of
the reciprocal distance between centres of the nearest spheres a00.

G111 = 7.70, G200 = 8.89, G220 = 12.57, G311 = 14.74,
G222 = 2, G111 = 15.40. One can easily find them with use of
the formula Ghkl = π

√
2(h2 + k2 + l2)a−1

00 (here the values of
Ghkl are taken in the units of the reciprocal distance between
centres of the nearest spheres a00).

From figure 3 one can conclude unambiguously that in
opal the a-SiO2 spheres’ coating layer is optically denser
than the nucleus. This is approved especially by the results
of scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) investigations [12]. Also note the
theoretical prediction of a resonant feature close to G222 =
15.40 which is in good agreement with the {222} stop-band
family behaviour observed experimentally.

Here we summarize the main conclusions following
from the results presented in figure 4. In Mc-PhCs, which
are optically inhomogeneous structures, simultaneous OFF
switching for all of the stop-bands is impossible. However,
for any given stop-band related to the Ghkl one can obtain the

4
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Figure 4. Schematic comparison of the Bragg diffraction by a two-component PhC and an Mc-PhC (upper panels) and corresponding
transmission spectra (lower panels). For a two-component PhC: the general case of the Bragg scattering (a), (f) and the non-diffraction regime
(b), (g). For an Mc-PhC: the general case of the Bragg scattering (c), (h), the non-diffraction selective regime (d), (i) and the resonant
‘non-immersive’ stop-bands (e), (j).

Figure 5. (a)–(c) The filler permittivity ε0
f (G) of a 3c-PhC in the non-diffraction regime as a function of the reciprocal lattice vector G,

calculated from equations (6a)–(6c) for structures composed of building blocks with the nucleus of radius rn = 0.35 (εn = 2.0) and different
coats (rc = 0.45, εc = 1.7, 2.0, 2.3) for different dimensions: (a) 1D—red solid, (b) 2D—green dotted and (c) 3D blue dashed. (d) The
comparison of the ε0

f (G) dependences for three different dimensions. The curves are shifted by the value of the first root G1 (shown by
arrows). The styles of the curves correspond to (a)–(c).

OFF-switching condition using expression (4c) (figures 4(d)
and (i)). This means the structure becomes transparent for
the corresponding Bragg wavelengths. The exception is a
resonant stop-band, the parameters of which are determined
from formulae (7a)–(7c). The resonant stop-band could not be
OFF-switched by varying εf (figure 4(j)).

One more property of the ε0
f (G) function is demonstrated

in figure 5. The figure presents a wide range of G dependences

of ε0
f (G) for 1D 3c-PhC (a), 2D 3c-PhC (b) and 3D 3c-PhC

(c), which are plotted like the ones shown in figure 3, i.e. there
are three cases considered εn = εc, εn > εc and εn < εc.
Now let us consider the specific feature of the ε0

f (G) function,
namely, special quasi-periodic points at G = Gn, when all
three curves intersect at the value ε0

f (Gn) = εn. Indeed, from
equations (6a)–(6c) one can obtain the G-coordinate of such
a point. The corresponding values Gn determined with use of

5
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equations (6a)–(6c) are:

For 1D 3c-PhC: sin(Grn) = sin(Grc). (8a)

For 2D 3c-PhC: rn J1(Grn) = rc J1(Grc). (8b)

For 3D 3c-PhC: R(Grn) = R(Grc). (8c)

For example, at rn = 0.35 and rc = 0.45, the first
root G1 of equations (8a)–(8c) (i.e. the smallest Gn value) is
G1 ≈ 3.93 (1D), 6.00 (2D), 7.81 (3D).

To analyse the influence of the geometrical dimensionality
we have superposed curves from figures 5(a)–(c) onto 5(d). All
the curves were shifted along the abscissas by G1. A quite
unexpected result is revealed by figure 5(d). In spite of the
fact that OFF-switching conditions in 3c-PhC with different
dimensions have different mathematical definitions (namely,
using functions sin(x) for (1D), J1(x) for (2D), R(x) for (3D)),
after shifting by G1 the functions ε0

f (G − G1) virtually do
not depend on the PhC dimensionality. The same result was
obtained for the general case of Mc-PhCs.

7. Conclusion

In this work we have discussed an ‘architectural’ approach
in studies of the structural and optical properties of the PhC.
The base element forming the PhC structure and mainly
determining its optical properties is its ‘building block’, which
can be represented by a slab, cylinder, sphere etc. The
permittivity profile εbb(r), which classifies a PhC as a two-
component PhC (εbb = const) and an Mc-PhC and plays
the key role in photonic band gap structure formation, is
a general characteristic of the building block. The Mc-
PhC is formed from building blocks with an inhomogeneous
permittivity profile εbb(r) and, hence, its structure is optically
inhomogeneous irrespective of the filler permittivity εf. We
have discussed in detail the problem of optical transparency
of such an inhomogeneous Mc-PhC. It has been shown
that for a given stop-band one could fulfil the OFF-
switching condition using the appropriate filler permittivity
ε0

f (G). This means the Mc-PhC becomes transparent at
the corresponding Bragg wavelengths. The only exception
is the resonant ‘non-immersive’ stop-bands, i.e. stop-bands
that cannot be switched-OFF by varying the permittivity of
one of the components. Resonant stop-bands determine the
Bragg wavelengths at which the Mc-PhC is opaque. The
described photonic properties are immanent to Mc-PhCs of any
dimension (1D, 2D and 3D).

It is noteworthy that the quantitative results obtained in
this study are applicable to the low dielectric contrast case
only. However, we believe the general ideas on which the
analytical approach is based possess the necessary generality
to be adapted to the case of high dielectric contrast PhC
structures.
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